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Models of population dynamics in which per capita reproductive success declines at low
population levels (variously known as depensation, the Allee effect, and inverse density-
dependence) predict that populations can have multiple equilibria and may suddenly shift
from one equilibrium to another. If such depensatory dynamics exist, reduced mortality
may be insufficient to allow recovery of a population after abundance has been severely
reduced by harvesting. Estimates of spawner abundance and number of surviving prog-
eny for 128 fish stocks indicated only 3 stocks with significant depensation. Estimates of
the statistical power of the tests strengthen the conclusion that depensatory dynamics
are not apparent for fish populations at the levels studied.

Many of the world’s fisheries are heavily
exploited, and a number of stocks have
experienced severe declines in abundance,
many of them very suddenly (1). The causes
of the sudden declines and the potential for
recovery for a stock when fishing is reduced
have remained undetermined. The exis-
tence of depensatory dynamics would affect
this potential for recovery.

Ecosystems that exhibit multiple stable
states typically include a highly nonlinear
functional feeding response in which pred-
ators are saturated at high levels of prey (2).
Similar dynamics will resule if reproductive
success is reduced at low population densi-
ties because of the difficulty in finding
mates; this is sometimes known as the Allee
effect. Both predator saturation and the
Allee effect can result in a low per capita
production of new recruits to a population if
the number of reproducing animals is re-
duced to a low level, an effect known as
depensation (3). Although these arguments
are appealing, no rigorous empirical studies
have examined the hypothesis that natural
populations exhibit depensatory dynamics.

We analyzed models with and without
depensation, using maximum likelihood es-
timation assuming log-normally distributed
variation about the mean, and compared
their goodness of fit to the observed data
(Table 1) (4). This is equivalent to estima-
tion using log-transformed data and assum-
ing additive normal errors. The models
used the Beverton-Holt spawner and re-
cruitment function, modified to include
depensatory recruitment (5), given by
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where R is recruitment of new fish to the
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population; S is a metric of spawner abun-
dance; and «, K, and & are all positive
parameters. The parameter 8 controls the

depensation in the recruitment curve. If 8
equals 1, there is no depensation. Depensa-
tory dynamics are characterized by 8 > 1
and a sigmoidally shaped recruitment curve,
with an unstable equilibrium point at low
spawner abundance (Fig. 1). Our test used
the likelihood ratio between the maximum
likelihood fit of the model with & as a free
parameter and the model with 3 fixed at 1.

Data on 128 fish stocks were extracted
from the database prepared by Myers et al.
(4). Spawner and recruitment time series
for each stock were obtained from assess-
ments prepared to advise management on
the harvest of marine and anadromous fish-
es. We selected from the database those
stocks for which the time series encom-
passed at least 15 years.

For 9 of the 128 stocks, the model with
S as a free parameter gave a significantly
better fit at the 0.05 level (Fig. 2 and Table

Table 1. Results of the likelihood ratio tests for depensation and resuits from the power analyses using
the modified Beverton-Holt function for the 26 stocks for which the estimated power (when the true 8 =
2) was found to be >0.95. The table lists the number of pairs of data points n, the estimated depensation
parameter 8, the P value from the likelihood ratio test, and the estimated power (when the true § = 2).

Population n 3 P value Power
Clupeiformes
Clupeidae
Herring (Clupea harengus)
Central Baltic 16 1.12 0.89 1.00
Downs stock 65 0.56 <0.01 1.00
Iceland (spring spawners) 23 1.78 <0.01 1.00
lceland (summer spawners) 43 0.58 0.02 0.99
North Sea 41 1.42 0.29 0.97
Pacific sardine (Sardinops caerulea)
California 31 1.21 0.18 1.00
Engraulidae
Peruvian anchoveta (Engraulis ringens)
Northemn-Central Stock Peru 19 1.86 0.12 1.00
Gadiformes
Gadidae
Cod (Gadus morhua)
Labrador 28 0.60 0.04 0.98
Southeast Baltic 22 0.82 0.59 1.00
Celtic Sea 20 1.14 0.82 1.00
Kattegat 19 1.06 0.95 1.00
Haddock (Melanogrammus aeglefinus)
Georges Bank 58 1.19 0.43 1.00
Northeast Arctic 39 0.95 0.88 0.98
Merlucciidae
Silver hake (Merluccius bilinearis)
Georges Bank 33 0.86 0.25 1.00
Mid-Atlantic Bight 33 1.00 1.00 1.00
Salmoniformes
Salmonidae
Pink salmon (Oncorhynchus gorbuscha)
Sashin Creek, Little Port Walter, Alaska 25 1.35 0.03 1.00
Prince William Sound, Alaska 15 1.47 0.04 1.00
Central Alaska 25 0.67 0.04 1.00
Sockeye salmon (Oncorhynchus nerka)
Adams Complex, British Columbia, Canada 38 0.99 0.92 1.00
Chilko River, Canada 38 1.07 0.82 1.00
Egegik, Alaska 32 0.80 0.62 1.00
Horsefly River, Canada 38 1.00 0.96 1.00
Kvichak River, Alaska 25 0.91 0.53 1.00
Skeena River, Canada 39 1.24 0.69 0.96
Stellako River, Canada 38 0.76 0.60 1.00
Early Stuart Complex, Canada 38 0.73 0.02 1.00
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1). In three cases, the estimate of & was
greater than 1 (Fig. 3). Spring-spawning
Icelandic herring constitute the only popu-
lation we examined in which the fishery
collapsed and remained commercially ex-
tinct. Strong environmental changes have

been identified that likely affected this
stock and may have been responsible for its
demise (6). The only other stocks with
significant depensation are Pacific salmon
stocks, which have been driven to extreme-
ly low levels by fishing and habitat loss (7).

Although not statistically significant at
the 0.05 level, two other stocks show some
evidence of depensatory dynamics. Pacific
sardines and Georges Bank herring were
both driven to very low abundance by over-
exploitation (8). In both cases, no recovery
was observed for decades, but now both
stocks are appearing to increase. Depensa-
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Fig. 3. Survival (recruits per spawner) versus spawner abundance (on a
square root scale) for populations with significant depensation or high power
to detect depensation. Evidence for depensation is decreased survival at low
population levels (first three panels in the top row). Generally, survival was
higher at low population levels. We computed survival by transforming recruit-
ment and spawner abundance to the same units and then taking their ratio;
thus, it is scaled in terms of replacement levels. When survival is less than

Spawner abundance

and spawner data.
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1, the population cannot replace itself (pink salmon from Sashin Creek were
an exception; recruitment in that case was in terms of fry). Spawner units are
in thousands of metric tons of spawners for marine fish and thousands of
individuals for the salmon species. The solid curve is the fitted spawner and
recruitment relation with & fixed at 1. The dotted curve is the fitted relation with
8 estimated as a free parameter. The curves were fit to the original recruitment
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the constructed curve at each of the ob-
served spawner abundances. Finally, we
performed the likelihood ratio test for de-
pensation described above and repeated
the procedure 100 times to estimate the
statistical power.

Statistical power was greater than 0.95
for 26 stocks for 8 = 2 (Fig. 3). In each of
these, large declines in abundance have
occurred, providing data at reduced
spawner abundances. If depensatory re-
cruitment is a general phenomenon in fish
populations through this observed range of
decrease, we would have expected more
than 3 of the 128 stocks examined to show
significant depensation in the observed
data. These results are robust to gamma-
instead of log-normally distributed residu-
als, reasonable estimation error of spawn-
ers, and serial correlation in recruitment
(10). It is possible that more complex
behavior might be masked by shortcom-
ings in our approach.

Theoretical analyses and previous non-
statistical descriptions of depensatory re-
cruitment for fish stocks (11) are not sub-
stantiated by our comparative analysis of
the available dara. None of the extant
stocks of cod, plaice, hakes, or other com-
mercially valuable species, many of which
have been very heavily exploited, dis-
played depensatory dynamics in reproduc-
tion. The great majority of the populations
show evidence of increased survival at
lower population levels (12). This analysis
indicates that models with strongly re-
duced per capita reproductive success at
the spawner abundance typical of current-
ly surviving fish stocks are not generally
applicable to fish population dynamics.
The fish population collapses so far ob-
served cannot be attributed to depensatory
dynamics. The implication is that reduc-
tions in fishing mortality rates implement-
ed by resource managers should enable
currently remaining stocks to rebuild, un-
less environmental or ecosystem-level
changes occur that alter the underlying
dynamics of the stock. We conclude that
the effects of overfishing are, at this point,
still generally reversible.
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